

 1

2

By

José Roberto Olivas Mendoza

Foreword by Daniel Jebaraj

 3

Copyright © 2015 by Syncfusion Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: Stephen Haunts

Copy Editor: Courtney Wright

Acquisitions Coordinator: Hillary Bowling, marketing coordinator, Syncfusion, Inc.

Proofreader: Darren West, content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

4

Table of Contents

The Story behind the Succinctly Series of Books ... 7

About the author ... 9

Who is this book for? ... 10

Introduction ... 11

What is a Windows Service? ... 11

Windows Services administration .. 11

Developing Windows Services .. 12

Chapter 1 Windows Services development with .NET .. 13

Getting started ... 13

How to create the project in Visual Studio ... 13

Windows Service project base line .. 14

Application entry point .. 15

ServiceBase .NET class .. 16

ServiceBase derived class definition ... 16

Service lifetime ... 17

OnStart method .. 18

OnStop method .. 19

Chapter summary .. 19

Chapter 2 The Windows Event Log ... 20

Bounding the service to the Windows Event Log .. 21

Writing events to the Windows Event Log ... 22

Chapter summary .. 24

Chapter 3 Service Installer ... 26

 5

Adding a Service Installer .. 26

Chapter summary .. 32

Chapter 4 Backup Files Service .. 33

Defining requirements .. 33

Task list .. 33

Creating the XML configuration file.. 33

Creating the method that will read the parameters .. 34

Creating a class for the backup process.. 39

Executing the backup process ... 43

The puzzle has been assembled ... 48

Chapter summary .. 51

Chapter 5 Deploying the service ... 52

Installer tool .. 52

BAT installation file .. 54

BAT uninstall file .. 55

Service distribution package .. 55

Chapter summary .. 56

Chapter 6 Creating a user interface to configure the service .. 57

Overview .. 57

Creating the solution in Visual Studio .. 57

Setting up the project’s main form ... 59

Looking for a previous XML parameters file .. 60

Dealing with data entry .. 63

Validating time values .. 63

Checking existence of source and destination paths .. 63

Saving the parameters in the XML file ... 64

6

Using the XmlDocument object ... 65

Notifying the service that the parameters were changed .. 66

The ServiceController class ... 67

Adding a System.ServiceProcess Reference .. 68

What does Notify_Changes code do? ... 69

The mainform.cs entire code ... 70

Deploying the user interface executable .. 75

Chapter summary .. 76

General Summary ... 77

Conclusion ... 78

 7

The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other
week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

S

8

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click” or “turn the
moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

 Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 9

About the author

I’m an IT businesses entrepreneur, software developer, and huge technology fan. My company
went to market in 1990, focused basically in custom software development. Since then, we’ve
been using Microsoft’s technologies. We started with COBOL as our main programming
language, evolving along these years up to DotNET and Office technologies.

I’ve been programming since 1988 (just a couple of years before my company was founded) in
many languages, such as COBOL, Quick Basic, PASCAL, Clipper, FoxPro, Visual FoxPro,
Visual Basic, Clarion, and C#. VBA for Applications (included in Microsoft Office products) and
various database platforms such as Microsoft SQL Server, Postgres, Firebird, and MySQL have
also have been part of my projects.

My company has worked in more than 100 projects for the last 25 years. These projects have
been oriented to small and mid-sized businesses the most, including Grain Purchasing and
Selling Software, ERP solutions, point of sale applications for general retail businesses,
hardware stores, mobile devices stores, auto parts stores, and fast food restaurants. We also
developed a .NET API oriented to electronic invoicing, according to Mexico’s Revenue Service
(known as SAT) regulations. This API is used by about 5,000 users.

My work with Windows Services started five years ago. Our technical support department
needed to monitor usage of a POS application, which was deployed in a remote server and
accessed over the internet. Since the monitoring process was intended to run in background
mode with no human interaction at all, automation was one of the main requirements. The
process needed to run indefinitely, as long as the server was up and running, even if there was
no user logged on. The solution was to develop a Windows Service, which was intended to write
a log entry every time a user logs on or logs off the application. The data would be stored in an
MS SQL Database, so we could get statics about usage time and who was working with the
application.

Today, programming Windows Services helps us to improve our products. As a result, we can
offer our customers more value for their businesses and cut our technical support costs.

10

Who is this book for?

This book is being written primarily for .NET developers who want to improve their applications
by using Windows Services or who want to start in Windows Services development.

The book starts with a brief explanation about what Windows Services are and how they are
managed in Windows. Then, it shows how to create a basic Windows Service project type using
Visual Studio.

The rest of the book is intended to build a practical Windows Service project, step by step, and
show the code needed for that purpose. Basic concepts about Windows Services and Windows
log events are discussed too.

Finally, it explains how to deploy the service application created in the computer in which the
service will be running, and gives suggestions about making the deployment process easier.

For the purposes of this book, all the sample code was written in C# and requires Visual Studio
2010 and .NET framework 3.5 minimum. The entire project discussed in this book can be
downloaded here.

I hope that by the time they finish reading this book, developers can create Windows Services
taking advantage of Visual Studio and C# capabilities and benefit from using them in their
projects.

https://bitbucket.org/jrolivasmendoza/winservices

 11

Introduction

What is a Windows Service?

A Windows Service, formerly known as an NT Service, is an executable application that runs in
its own Windows session and doesn’t show a user interface. It operates in the background and
runs as long as Windows is running. It can also be configured to start when the operating
system is started, and alternatively, can be started manually or by an event. Because a
Windows Service operates in the context of its own dedicated user account, it can operate when
a user is not logged on.

Windows Services administration

Windows administrators can manage services in several ways. These include the Sc.exe
command line tool, Windows Power Shell, and the Services snap-in, which is found under
Administrative Tools in the Windows Control Panel and shown in the following figure.

Figure 1: The Services Snap-in

The Services snap-in can connect to the local computer or a remote computer on the network,
enabling users to do the following:

 View a list of all installed services including service name, description, and
configuration

 Start, stop, pause, or restart services

12

 Change the startup type. Acceptable types are:

o Automatic: The service starts at system startup.

o Automatic (delayed): The service starts a short while after the system has
finished starting up.

o Manual: The service starts only when explicitly summoned.

o Disabled: The service is disabled and will not run.

 Change the user account context in which the service works.

 Configure actions that should be taken if a service fails.

 Inspect service dependencies.

 Export the list of services to a text file.

Note: The Automatic (delayed) option was introduced in Windows Vista in an attempt to

reduce the boot-to-desktop time. However, not all services support delayed start.

Developing Windows Services

Windows Services can be developed using Visual Studio. In order to be a Windows Service, a
program needs to be coded in a particular way using a supplied template for this purpose. That
is, it must handle start, stop, and pause messages from the Service Control Manager, the
component of Windows that is responsible for starting and stopping services.

Tip: Services must be created in a Windows Service application project under Visual Studio.

 13

Chapter 1 Windows Services Development
with .NET

Getting started

How to create the project in Visual Studio

The first step in developing a Windows Service, after loading Microsoft Visual Studio, is to
create a Windows Service type project. The following figure shows this kind of project dialog in
Visual Studio.

Figure 2: The Visual Studio Windows Service project type

14

Windows Service project base line

The base line for a Windows Service project consists of two programs; one of them, called
Program.cs, manages the application entry point. The other one, Service1.cs, encapsulates
the service class definition. A developer can add as many programs as it needs in order to
easily maintain code or to add special features to the project.

Customizing project base line

The project base line can be customized in order to fit a developer’s own needs. To do it in such
way, you must rename the Solution, Project, Program.cs, and Service1.cs nodes. For the
purposes of this book, the Windows Service project will be named monitorservice. The
following figure shows the Visual Studio Solution Explorer before and after customization.

Figure 3: Solution Explorer before and after project customization

 15

Tip: You can quickly rename elements in the Solution Explorer tree by right-clicking the

desired node and applying the Rename command, from the Context pop-up menu. After you

rename the action, the Visual Studio Refactoring Code Tool is fired.

Application entry point

Like many Visual Studio applications, a Windows Service needs an entry point in order to be
executed. The following code sample shows the entry point for the project.

Code Sample 1

This program creates an array named ServicesToRun. This array is based on the ServiceBase

.NET class, and stores an instance of the monitorservice custom class. Monitorservice is

also derived from the ServiceBase .NET class, and will manage the Windows Service that is

being developed.

Once the array is created, the program calls the Run method of ServiceBase, passing the array

as a parameter, and service execution starts.

using System;
using System.Collections.Generic;
using System.Linq;
using System.ServiceProcess;
using System.Text;
using System.Threading.Tasks;

namespace monitorservice
{
 static class monitorservicemain
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 static void Main()
 {
 ServiceBase[] ServicesToRun;
 ServicesToRun = new ServiceBase[]
 {
 new monitorservice()
 };
 ServiceBase.Run(ServicesToRun);
 }
 }
}

16

ServiceBase .NET class

This class is part of the System.ServiceProcess namespace, and provides a base class for a

service that will exist as part of a service application. ServiceBase must be derived from

creating a new service class for a service application. As mentioned previously, the derived
class that will manage the service is named monitorservice, and can be found in the

monitorservice.cs file.

Remarks

Any useful service overrides the OnStart and OnStop methods. For additional

functionality, OnPause and OnContinue can be overridden with specific behavior in response to

changes in the service state. This can be useful if a user interface needs to be provided to
change service behavior, because the service can be notified about this change using these
methods.

By default, services run under the System account, which is not the same as the Administrator
account. The rights of the System account can’t be changed.

When a service is started, the system locates the executable and runs the OnStart method for

that service, contained within the executable. However, running the service is not the same as
running the executable. The executable only loads the service. The service is accessed (for
example, started, and stopped) through the Service Control Manager.

ServiceBase derived class definition

The following code sample shows the monitorservice derived class definition.

Code Sample 2

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Linq;
using System.ServiceProcess;
using System.Text;
using System.Threading.Tasks;

namespace monitorservice
{
 public partial class monitorservice : ServiceBase
 {
 private System.Timers.Timer serviceTimer = null;

 public monitorservice()
 {

 17

When the project was created, Visual Studio generated this code automatically. Basically this
code does the following:

1. When an instance of the class is created, the constructor calls the
InitializeComponent() method in order to place all the code needed to perform when
the instance is created.

2. Overrides the OnStart() event in order to place all the code needed to perform when
the service starts its execution.

3. Overrides the OnStop() event in order to place all the code needed to perform when the
service stops its execution.

This is the base code from which the entire service application will be developed. In order to add
more features to the application, we may need to override other events. I suggest sticking to
service lifetime, which is explained in the following section.

Service lifetime

A service goes through several internal states in its lifetime. First, the service is installed onto
the system on which it will run. This process executes the installers for the service project and
loads the service into the Services Control Manager for that computer. The Services Control
Manager is the utility provided to administer services.

After the service has been loaded, it must be started. Starting the service allows it to begin
functioning. A service can be started from the Services Control Manager, from Server Explorer,
or from code by calling the Start method. The Start method passes processing to the

application's OnStart method and processes any code you have defined there.

 InitializeComponent();
 }

 protected override void OnStart(string[] args)
 {
 }

 private void timer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
 {
 }

 protected override void OnStop()
 {
 }

 }
}

18

A running service can exist in this state indefinitely until it is either stopped or paused, or until
the computer shuts down. A service can exist in one of three basic states: Running, Paused, or
Stopped. The service can also report the state of a pending command: ContinuePending,

PausePending, StartPending, or StopPending. These statuses indicate that a command has

been issued (such as a command to pause a running service), but has not yet been carried out.
You can query the Status to determine what state a service is in, or use WaitForStatus to

carry out an action when any of these states occurs.

You can pause, stop, or resume a service from the Services Control Manager, from Server
Explorer, or by calling methods in code. Each of these actions can call an associated procedure
in the service (OnStop, OnPause, or OnContinue), in which you can define additional processing

to be performed when the service changes state.

OnStart method

When a service is started, the system locates the executable and runs the OnStart method for

that service, contained within the executable. However, running the service is not the same as
running the executable; the executable only loads the service. The service is accessed (for
example, started and stopped) through the Service Control Manager.

The executable calls the ServiceBase derived class's constructor the first time Start is called

on the service. The OnStart command-handling method is called immediately after the

constructor executes. The constructor is not executed again after the first time the service has
been loaded, so it is necessary to separate the processing performed by the constructor from
that performed by OnStart. Any resources that can be released by OnStop should be created in

OnStart, since creating resources in the constructor prevents them from being created properly

if the service is started again after OnStop has released the resources.

The following code sample shows how the resources needed are created.

Code Sample 3

In this case a Timer object is instantiated and started. Every 300 milliseconds, the Elapsed

event of the timer will be fired and the timer_Elapsed method will be executed. The OnStop
event will release this resource.

protected override void OnStart(string[] args)
{
 this.serviceTimer = new System.Timers.Timer(300);
 this.serviceTimer.AutoReset = true;
 this.serviceTimer.Elapsed += new System.Timers.ElapsedEventHandler(this.timer_El
apsed);
 this.serviceTimer.Start();
}

 19

OnStop method

The OnStop method executes every time a Stop command is sent to the service, since the

OnStop event is fired. The Stop command could be sent by the Service Control Manager

(SCM). In similar way to the OnStart method, we can use the OnStop method to perform any

task needed at service stopping, such as releasing resources no longer needed, as shown in
the following code sample.

Code Sample 4

This code stops the Timer object execution and disposes it before service execution stops.

Chapter summary

Windows Services can be developed with .NET and Visual Studio using the Windows Service
template provided for this purpose. This template automatically creates the code baseline for
development.

The ServiceBase .NET class provides a base class for a service that will exist as part of a

service application, and must be derived from creating a new service class for a service
application.

When the service code baseline is created, the OnStart() and OnStop() methods are

overridden in order to execute actions when the service starts or stops its execution.

protected override void OnStop()
{
 this.serviceTimer.Stop();
 this.serviceTimer.Dispose();
 this.serviceTimer = null;
}

20

Chapter 2 The Windows Event Log

Windows Services have no interaction with the user, so it doesn’t have an interface. Whatever
output is needed to be produced is typically written to some sort of log, such as a database.
One good place to log to is the Windows Event Log.

The Windows Event Log is a record of a computer's alerts and notifications. Microsoft defines
an event as "any significant occurrence in the system or in a program that requires users to be
notified or an entry added to a log."

The Windows operating system classifies events by type. For example, an information
event describes the successful completion of a task, such as installing an application. A warning
event notifies the administrator of a potential problem, such as low disk space. An error
message describes a significant problem that may result in a loss of functionality. A success
audit event indicates the completion of an audited security event, such as an end user
successfully logging on. A failure audit event describes an audited security event that did not
complete successfully, such as an end user locking himself out by entering incorrect passwords.

Each event in a log entry contains the following information:

 Date: The date the event occurred

 Time: The time the event occurred

 User: The name of the user who was logged on when the event occurred

 Computer: The name of the computer

 Event ID: A Windows identification number that specifies the event type

 Source: The program or component that caused the event

 Type: The type of event (information, warning, error, security success audit, or
security failure audit)

The Windows Event Viewer

The Windows Event Viewer is a tool that displays detailed information about significant events
(for example, programs that don't start as expected or updates that are downloaded
automatically). The Windows Event Viewer can be helpful when troubleshooting problems and
errors with Windows and other programs, such as Windows Services. The Windows Event
Viewer can be found in the Administrative Tools section of the Control Panel.

Entries in the Windows Event Log can be viewed through Windows Event Viewer. This can be
used to debug service code. In fact, this is the only way to do this, since a Windows Service has
no user interface. The Windows Event Viewer’s main window is shown in the following figure.

 21

Figure 4: Windows Event Viewer

Bounding the service to the Windows Event Log

The service needs to be bounded to the Windows Event Log in order to write entries in it. To
accomplish that, the following code needs to be placed in the OnStart method.

Code Sample 5

As shown, the service first inquires the Event Log asking if an event source for
MonitorService has been created previously. If not, the event source is created with the

CreateEventSource method specifying that every log sent by the service will be written in the

Application type log.

Now, the code for the OnStart method looks like this:

Code Sample 6

if (!System.Diagnostics.EventLog.SourceExists("MonitorService"))
 System.Diagnostics.EventLog.CreateEventSource("MonitorService", "Application");

protected override void OnStart(string[] args)
{
 if (!System.Diagnostics.EventLog.SourceExists("MonitorService"))
 System.Diagnostics.EventLog.CreateEventSource("MonitorService", "Application

22

Writing events to the Windows Event Log

The service needs to write into the Windows Event Log in order to communicate with users. To
simplify the code, a method to log events will be written in class definition code. This method will
receive two parameters: a string containing the message that will be written into the log, and
another one that will indicate the type of event that’s being saved.

Event types

As previously mentioned, the Windows Event Log allows you to specify what type of event is
being saved. The EventLogEntryType enumeration will be used to that purpose.

The types allowed are the following:

 Information

 Warning

 Error

 Security success audit (SucessAudit): This type of event occurs when a user
successfully logged on to a network or a computer.

 Security failure audit (FailureAudit): This type of event occurs when a user fails to log
on to a network or a computer.

The LogEvent method

The code for this method is shown in the following sample.

Code Sample 7

");

 this.serviceTimer = new System.Timers.Timer(300);
 this.serviceTimer.AutoReset = true;
 this.serviceTimer.Elapsed += new System.Timers.ElapsedEventHandler(this.timer_El
apsed);
 this.serviceTimer.Start();
}

private void LogEvent(string message, EventLogEntryType entryType)
{
 System.Diagnostics.EventLog eventLog = new System.Diagnostics.EventLog();

 eventLog = new System.Diagnostics.EventLog();
 eventLog.Source = "MonitorService";
 eventLog.Log = "Application";
 eventLog.WriteEntry(message, entryType);

 23

As previously shown, every time the method is executed, it creates an EventLog instance. To

perform log entry writing, the Source and Log properties need to store the event source and the

log section in which the entry will be written. For this case, MonitorService will be the source

of the entry and Application the log section. Once the values are stored in their respective

properties, the WriteEntry method writes the entry in the Windows Event Log.

How class definition code looks so far

At this point, the code for service class definition looks like this:

Code Sample 8

}

public partial class monitorservice : ServiceBase
{
 private System.Timers.Timer serviceTimer = null;

 public monitorservice()
 {
 InitializeComponent();
 }

 protected override void OnStart(string[] args)
 {
 if (!System.Diagnostics.EventLog.SourceExists("MonitorService"))
 System.Diagnostics.EventLog.CreateEventSource("MonitorService", "Applicat
ion");

 this.LogEvent(String.Format("MonitorService starts on {0} {1}", System.DateTi
me.Now.ToString("dd-MMM-
yyyy"), DateTime.Now.ToString("hh:mm:ss tt")), EventLogEntryType.Information);

 this.serviceTimer = new System.Timers.Timer(300);
 this.serviceTimer.AutoReset = true;
 this.serviceTimer.Elapsed += new System.Timers.ElapsedEventHandler(this.timer
_Elapsed);
 this.serviceTimer.Start();
 }

 private void timer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
 {

 }

 protected override void OnStop()
 {
 this.serviceTimer.Stop();
 this.serviceTimer.Dispose();
 this.serviceTimer = null;

24

Notice that the OnStart and OnStop methods write to the Windows Event Log, notifying the

date and time when each of them were fired. In this case, it’s been considered an Information
log entry type for both of them.

Tip: Log entry type should be used every time a program writes to the Windows Event Log, in

order to clarify the reason the program is writing.

Chapter summary

The Windows Event Log is a record of a computer's alerts and notifications. An event can be
defined as "any significant occurrence in the system or in a program that requires users to be
notified or an entry added to a log." The Windows operating system classifies events by type.
An information event describes the successful completion of a task; a warning event notifies the
administrator of a potential problem; an error message describes a significant problem that may
result in a loss of functionality; a success audit event indicates the completion of an audited
security event, such as an end user successfully logging on; and a failure audit event describes
an audited security event that did not complete successfully, such as an end user locking
himself out by entering incorrect passwords.

Entries written in the Windows Event Log can be viewed through the Windows Event Viewer,
which can be found in the Administrative Tools section of Control Panel. The Windows Event
Viewer is a tool that displays detailed information about significant events (for example,
programs that don't start as expected or updates that are downloaded automatically) on the
computer, and can be helpful when troubleshooting problems and errors with Windows and
other programs, such as Windows Services.

 this.LogEvent(String.Format("MonitorService stops on {0} {1}", System.DateTim
e.Now.ToString("dd-MMM-
yyyy"), DateTime.Now.ToString("hh:mm:ss tt")), EventLogEntryType.Information);

 }

 private void LogEvent(string message, EventLogEntryType entryType)
 {
 System.Diagnostics.EventLog eventLog = new System.Diagnostics.EventLog();

 eventLog = new System.Diagnostics.EventLog();
 eventLog.Source = "MonitorService";
 eventLog.Log = "Application";
 eventLog.WriteEntry(message, entryType);

 }

}

 25

Since a Windows Service has no interface, writing entries in the Windows Event Log is a
preferred way to communicate with users. In order to write these entries, the service needs to
be bounded to the Windows Event Log. This can be accomplished using the
CreateEventSource() method of the System.Diagnostics.EventLog namespace.

It’s suggested to write a separate method to deal with entries writing activity. The
EventLogEntryType enumeration must be used in order to clarify why each entry was written

by the program.

26

Chapter 3 Service Installer

Creating a Windows Service project is a bit different from other kinds of projects. In order to be
correctly deployed, Visual Studio ships installation components that can install resources
associated with service applications. Installation components register an individual service on
the system to which it is being installed and let the Services Control Manager know that the
service exists.

Adding a Service Installer

Working with a service application allows you to automatically add the appropriate installers to
the project. You can also accomplish this by double-clicking on the monitorservice.cs file
name (where service base class is stored) in the Solution Explorer tree, and the Service
Designer screen (shown in the following figure) will appear.

Figure 5: Service designer screen

Right-clicking on the gray area will bring up the Service Designer context menu. To
automatically add the proper installer code to the project, click Add Installer.

 27

The installer code

Two files, ProjectInstaller.cs and ProjectInstaller.Designer.cs, will be added to the project.
All properties needed for service installation will be set here. The following code sample shows
the contents of ProjectInstaller.cs.

Code Sample 9

The RunInstaller attribute of the ProjectInstaller class tells that Visual Studio's Custom

Action Installer or the InstallUtil.exe will be invoked when the assembly is installed.
InstallUtil.exe will be discussed later.

A constructor method is the only one created by the IDE, and this method calls the
InitializeComponent() method in order to setup the values needed to install the service

correctly.

Establishing service installation properties

To establish service installation properties, right-click the ProjectInstaller.cs file name in the
monitorservice project tree, and then choose View Designer from the context menu that
appears.

The designer window for ProjectInstaller.cs will appear with two icon buttons in it. One of these
is linked to an instance of a serviceProcessInstaller object, and the other one to an

instance of a ServiceInstaller object. These two instances contain the properties needed to

make the Windows service installation successful.

These properties are:

 Account – Indicates the account type under which the service will run

using System;
using System.Collections;
using System.Collections.Generic;
using System.ComponentModel;
using System.Configuration.Install;
using System.Linq;
using System.Threading.Tasks;

namespace monitorservice
{
 [RunInstaller(true)]
 public partial class ProjectInstaller : System.Configuration.Install.Installer
 {
 public ProjectInstaller()
 {
 InitializeComponent();
 }
 }
}

28

 Description – Indicates the service’s description (a brief comment that explains the
purpose of the service)

 DisplayName – Indicates the friendly name that identifies the service to the user

 ServiceName – Indicates the name used by the system to identify this service

 StartType – Indicates how and when this service is started (as discussed in the
Introduction)

Figure 6: ProjectInstaller.cs designer screen with iconic buttons

Clicking on each button allows you to change the properties listed previously. To accomplish
this task, it is necessary to use the Properties Window corresponding to each button, and enter
the proper values in the corresponding textbox’s Properties window.

 29

Figure 7: Figure 7: serviceProcessInstaller Properties window

Figure 8: serviceInstaller Properties window

Once this is done, the InitializeComponent method’s code will look like the following sample.

Code Sample 10

private void InitializeComponent()
{
 this.serviceProcessInstaller1 = new System.ServiceProcess.ServiceProcessInstaller
();
 this.serviceInstaller1 = new System.ServiceProcess.ServiceInstaller();
 //
 // serviceProcessInstaller1
 //
 this.serviceProcessInstaller1.Account = System.ServiceProcess.ServiceAccount.Loca
lSystem;
 this.serviceProcessInstaller1.Password = null;
 this.serviceProcessInstaller1.Username = null;
 //
 // serviceInstaller1
 //

30

The code creates both an instance of ServiceProcessInstaller class and an instance for

ServiceInstaller class. Then, it stores the name of the account that will be in charge of

managing the service in the Account property of the ServicesProcessInstaller instance. In

this case, the installer will use the LocalSystem account.

The StartType property of the ServiceInstaller instance will tell the installer that service will

start automatically. The name that will be displayed in the Windows Services snap-in is stored in
the DisplayName property, and a description for the service is stored in the Description

property.

Now, the entire code for project installer will look like the following sample.

Code Sample 11

 this.serviceInstaller1.ServiceName = "MonitorService";
 this.serviceInstaller1.DisplayName = "MonitorService";
 this.serviceInstaller1.Description = "Developing Windows Services Succinctly Tuto
rial";
 this.serviceInstaller1.StartType = System.ServiceProcess.ServiceStartMode.Automat
ic;
 //
 // ProjectInstaller
 //
 this.Installers.AddRange(new System.Configuration.Install.Installer[] {
 this.serviceProcessInstaller1,
 this.serviceInstaller1});

}

//ProjectInstaller.cs
using System;
using System.Collections;
using System.Collections.Generic;
using System.ComponentModel;
using System.Configuration.Install;
using System.Linq;
using System.Threading.Tasks;

namespace monitorservice
{
 [RunInstaller(true)]
 public partial class ProjectInstaller : System.Configuration.Install.Installer
 {
 public ProjectInstaller()
 {
 InitializeComponent();
 }
 }
}

//ProjectInstaller.Designer.cs

 31

namespace monitorservice
{
 partial class ProjectInstaller
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.IContainer components = null;

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 /// <param name="disposing">true if managed resources should be disposed; oth
erwise, false.</param>
 protected override void Dispose(bool disposing)
 {
 if (disposing && (components != null))
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }

 #region Component Designer generated code

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.serviceProcessInstaller1 = new System.ServiceProcess.ServiceProcessI
nstaller();
 this.serviceInstaller1 = new System.ServiceProcess.ServiceInstaller();
 //
 // serviceProcessInstaller1
 //
 this.serviceProcessInstaller1.Account = System.ServiceProcess.ServiceAcco
unt.LocalSystem;
 this.serviceProcessInstaller1.Password = null;
 this.serviceProcessInstaller1.Username = null;
 //
 // serviceInstaller1
 //
 this.serviceInstaller1.ServiceName = "MonitorService";
 this.serviceInstaller1.DisplayName = "MonitorService";
 this.serviceInstaller1.Description = "Developing Windows Services Succinc
tly Tutorial";
 this.serviceInstaller1.StartType = System.ServiceProcess.ServiceStartMode
.Automatic;
 //
 // ProjectInstaller
 //
 this.Installers.AddRange(new System.Configuration.Install.Installer[] {

32

At this point, the process of adding a Service Installer is complete.

Chapter summary

A Windows Service project is a bit different from others. To deploy it correctly, Visual Studio
ships installation components that register an individual service on the target system and let the
Services Control Manager know about its existence.

The Service Designer screen of the service base class file is used to add the appropriate
installers to the project. To show this screen, you double-click on the file name in the Solution
Explorer tree. Right-clicking on the gray area will bring up a context menu where the Add
Installer item can be found. Clicking on it will automatically add the proper installer code.

To successfully deploy the service in the target computer, it’s necessary to establish values for
some properties in the service installation code. These properties are: Account, which indicates

the account type under which the service will run; Description, which indicates a brief

comment that explains the purpose of the service; DisplayName, which indicates the friendly

name that identifies the service; ServiceName, which indicates the name used by the system to

identify it; and StartType, which indicates how and when this service is started. The Designer

View of the project installer code file (ProjectInstaller,cs) is used to set these values.

 this.serviceProcessInstaller1,
 this.serviceInstaller1});

 }

 #endregion

 private System.ServiceProcess.ServiceProcessInstaller serviceProcessInstaller
1;
 private System.ServiceProcess.ServiceInstaller serviceInstaller1;
 }
}

 33

Chapter 4 Backup Files Service

So far, all code pieces needed to build a Windows Service project have been seen. Now, the
most important thing is to give a purpose to the service that will be created. In this case, a
backup files service will be developed.

Defining requirements

As explained previously, the purpose of the service will be to back up a set of files. The
requirements for this service are the following.

 The set of files to be backed up will be in a particular folder in the target computer.

 The backup process needs to be done out of working time.

 All files in the folder will be added to a zip file.

 The zip file will be copied to a specific folder in the target computer.

Task list

In order to fulfill the previous requirements list, the following tasks need to be accomplished:

 Create a configuration file that specifies the folder to be backed up, the backup file
destination folder, and the date and time in which the backup process will be
executed. The file will be in XML format.

 Create a method that will read the parameters stored in the configuration file and let
them be visible for the entire service application.

 Create a separate class that will be in charge of the backup process.

 Execute the backup process every time the condition established in the parameter’s
file is met.

For the purpose of this book, a Windows Service with specific function will be developed. In this
case, a backup files service will be written using C# as a programming language, and it will
make a compressed copy of a specific folder in the target system.

Creating the XML configuration file

As discussed previously, Windows Services has no user interaction capabilities. So, the only
communication method available is using configuration files, whether these configuration files
are written in a text editor or by using a desktop application built for that purpose.

The XML configuration file for Backup Files Windows Service will look like the following.

34

Code Sample 12

The root node of XML is called Parameters, and is intended to hold any kind of action the

service would need to perform. Each action that will be executed by the service is stored as a
child node. In this case, Backup child node attributes stores all parameters for backing up files.

Backup node attributes

The attributes of the Backup node are the following:

 Source – The folder that contains the files to be backed up

 Destination – The folder that will store the zip backup file

 Dayofweek – The day of the week, starting with 1 for Sunday, in which the backup
process will be executed; 0 (zero) means every day

 Hour – The time of the day for executing the backup process

Creating the method that will read the parameters

Once the XML parameters file is created, the service will need the ability to read it and store
these parameters for using them later. A method with this purpose will be added to the service
definition class. The code will look like the following sample.

Code Sample 13

<?xml version="1.0" encoding="utf-8"?>
<Parameters>
<Backup source="C:\Documents" destination="D:\Backups"dayofweek="0"
hour="04:40:00"/>
</Parameters>

private void check_parameters()
{
 if (!System.IO.Directory.Exists(this.HomeDir + "\\parameters"))
 {
 System.IO.Directory.CreateDirectory(this.HomeDir + "\\parameters");
 this.LogEvent(String.Format("MonitorService: parameters file folder was just
been created"), EventLogEntryType.Information);
 this.IsReady = false;

 }
 else
 {
 if (System.IO.File.Exists(this.HomeDir + "\\parameters\\srvparams.xml"))
 {
 Boolean docparsed = true;
 XmlDocument parametersdoc = new XmlDocument();

 try
 {

 35

A HomeDir property is added to the class definition, in order to store the folder name in which

service application will be installed. Also, an IsReady property is added to tell the service if the

working parameters have been loaded from the XML file.

The method checks to see if a folder named parameters exists in the HomeDir folder. If not,
the System.IO.Directory.CreateDirectory method is used to create it, and an entry is

written in the Windows Event Log. The value of the IsReady property is set to false so the

service won’t execute the backup process, since there’s no working parameters loaded.

 parametersdoc.Load(this.HomeDir + "\\parameters\\srvparams.xml");
 }
 catch (XmlException ex)
 {
 docparsed = false;
 this.IsReady = false;
 this.LogEvent(String.Format("Parameters file couldn't be read: {0}",
ex.Message), EventLogEntryType.Error);
 }

 if (docparsed)
 {
 XmlNode BackupParameters = parametersdoc.ChildNodes.Item(1).ChildNode
s.Item(0);
 this.source_path = BackupParameters.Attributes.GetNamedItem("source")
.Value.Trim();
 this.destination_path = BackupParameters.Attributes.GetNamedItem("des
tination").Value.Trim();
 this.dayofweek = Convert.ToInt32(BackupParameters.Attributes.GetNamed
Item("dayofweek").Value.Trim());
 this.time = BackupParameters.Attributes.GetNamedItem("hour").Value.Tr
im();
 this.IsReady = true;

 this.LogEvent(String.Format("Backup Service parameters were loaded"),
 EventLogEntryType.Information);
 }

 parametersdoc = null;
 }
 else
 {
 this.LogEvent(String.Format("Backup Service parameters file doesn't exist
"), EventLogEntryType.Error);
 this.IsReady = false;
 }
 }
}

36

Otherwise, the method looks for a srvparams.xml file in the parameters folder in order to load
the service working parameters. If the file doesn’t exist, the method just writes an entry in the
Windows Event Log, and the IsReady property value is set to false. If the file does exist, the

check_parameters() method tries to parse the content of the XML file. If parsing fails, an entry

in the Windows Event Log is written and the IsReady property is also set to false. Otherwise,

the working parameters are stored in their respective properties into the class definition and the
IsReady property is set to true.

The check_parameters() method is called when service execution starts. This will occur when

the OnStart event is triggered and its associated method is executed.

Now, the entire service class definition code looks like the following sample.

Code Sample 14

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Linq;
using System.ServiceProcess;
using System.Text;
using System.Threading.Tasks;
using System.Xml;

namespace monitorservice
{
 public partial class monitorservice : ServiceBase
 {
 private System.Timers.Timer serviceTimer = null;
 private string HomeDir = (new System.IO.DirectoryInfo(System.AppDomain.Curren
tDomain.BaseDirectory)).FullName.Trim();
 private string source_path = "";
 private string destination_path = "";
 private int dayofweek = 0;
 private string time = "";

 public monitorservice()
 {
 InitializeComponent();
 }

 protected override void OnStart(string[] args)
 {
 if (!System.Diagnostics.EventLog.SourceExists("MonitorService"))
 System.Diagnostics.EventLog.CreateEventSource("MonitorService", "Appl
ication");

 this.LogEvent(String.Format("MonitorService starts on {0} {1}", System.Da
teTime.Now.ToString("dd-MMM-

 37

yyyy"), DateTime.Now.ToString("hh:mm:ss tt")), EventLogEntryType.Information);

 this.check_parameters(); //Need to load service behavior parameters

 this.serviceTimer = new System.Timers.Timer(300);
 this.serviceTimer.AutoReset = true;
 this.serviceTimer.Elapsed += new System.Timers.ElapsedEventHandler(this.t
imer_Elapsed);
 this.serviceTimer.Start();
 }

 private void timer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
 {

 }

 protected override void OnStop()
 {
 this.serviceTimer.Stop();
 this.serviceTimer.Dispose();
 this.serviceTimer = null;

 this.LogEvent(String.Format("MonitorService stops on {0} {1}", System.Dat
eTime.Now.ToString("dd-MMM-
yyyy"), DateTime.Now.ToString("hh:mm:ss tt")), EventLogEntryType.Information);

 }

 private void LogEvent(string message, EventLogEntryType entryType)
 {
 System.Diagnostics.EventLog eventLog = new System.Diagnostics.EventLog();

 eventLog = new System.Diagnostics.EventLog();
 eventLog.Source = "MonitorService";
 eventLog.Log = "Application";
 eventLog.WriteEntry(message, entryType);

 }

 private void check_parameters()
 {
 if (!System.IO.Directory.Exists(this.HomeDir + "\\parameters"))
 {
 System.IO.Directory.CreateDirectory(this.HomeDir + "\\parameters");
 this.LogEvent(String.Format("MonitorService: parameters file folder w
as just been created"), EventLogEntryType.Information);
 }
 else
 {
 if (System.IO.File.Exists(this.HomeDir + "\\parameters\\srvparams.xml
"))
 {
 Boolean docparsed = true;
 XmlDocument parametersdoc = new XmlDocument();

38

 try
 {
 parametersdoc.Load(this.HomeDir + "\\parameters\\srvparams.xm
l");
 }
 catch (XmlException ex)
 {
 docparsed = false;
 this.LogEvent(String.Format("Parameters file couldn't be read
: {0}", ex.Message), EventLogEntryType.Error);
 }

 if (docparsed)
 {
 XmlNode BackupParameters = parametersdoc.ChildNodes.Item(1).C
hildNodes.Item(0);
 this.source_path = BackupParameters.Attributes.GetNamedItem("
source").Value.Trim();
 this.destination_path = BackupParameters.Attributes.GetNamedI
tem("destination").Value.Trim();
 this.dayofweek = Convert.ToInt32(BackupParameters.Attributes.
GetNamedItem("dayofweek").Value.Trim());
 this.time = BackupParameters.Attributes.GetNamedItem("hour").
Value.Trim();

 this.LogEvent(String.Format("Backup Service parameters were l
oaded"), EventLogEntryType.Information);
 }

 parametersdoc = null;
 }
 else
 {
 this.LogEvent(String.Format("Backup Service parameters file doesn
't exist"), EventLogEntryType.Error);
 }
 }
 }

 }
}

 39

Creating a class for the backup process

In order to keep project maintenance easy, the file backup process will be coded in a separate
class definition. To accomplish this, a class type item needs to be added into project. Right-click
on the project name node in the Solution Explorer tree, and click on the Class item of the Add
sub-menu. This will bring up the Add New Item dialog box.

Figure 9: Add New Item dialog

Type the class name on the proper textbox, and click Add to add the following code into the
project.

Code Sample 15

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace monitorservice
{
 class backupfiles

40

The entire class will be written up on the baseline code added to the project. One thing that
must be taken into account is that the requirements previously mentioned dictate that backup
must be stored in a ZIP file. The Ionic.Zip library will be used for this purpose, and can be
downloaded here. After downloading, the library files need to be copied into the project folder
and added into the project References node.

 {
 }
}

http://dotnetzip.codeplex.com/releases/view/68268

 41

Figure 10: Ionic.Zip library added to References node

The entire code for the backupfiles class is shown in the following snippet.

Code Sample 16

using Ionic.Zip;

42

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace monitorservice
{
 public class backupfiles
 {
 public string source_path = "";
 public string destination_path = "";
 public string error_message = "";

 public Boolean DoBackup()
 {
 Boolean result = default(Boolean);

 string destFileName = this.destination_path + "\\backup_" + System.DateTi
me.Now.ToString("MMM-dd-yyyy") + "-
" + System.DateTime.Now.ToString("hh:mm:ss").Replace(":","-")+".zip";

 using (ZipFile zipFile = new ZipFile())
 {
 string[] fileList = new string[1];
 result = true;

 this.error_message = "";

 try
 {
 fileList = Directory.GetFiles(this.source_path + "\\");
 }
 catch (Exception exception)
 {
 this.error_message = String.Format("MonitorService: Folder fi
le list can't be read: {0}",exception.Message);
 result = false;
 }
 finally
 {
 if (result)
 {
 zipFile.Encryption = EncryptionAlgorithm.WinZipAes256;
 zipFile.AddProgress += (this.zipFile_AddProgress);
 zipFile.AddDirectory(this.source_path);

 zipFile.Save(destFileName);
 }

 }
 }

 43

This class has only two methods. The DoBackup() method performs the backup process and

stores the files from the source folder in a compressed ZIP file. The zipFile_AddProgress()

method is a delegate for the AddProgress event of the ZipFile class. This event is fired every

time there is a change in compression work progress.

Executing the backup process

As previously described, the service definition class contains a Timer object, which is

programmed to fire an Elapsed event every 300 milliseconds. Every time the Elapsed event is

triggered, the method timer_Elapsed() is executed. So, the backup process will be executed

within this method.

Checking that backup conditions are met

First, the timer_Elapsed() method needs to check to see if the backup weekday and time

read from the XML configuration file match the current weekday and time at the moment when
the method is executed. This can be done with the following code.

Code Sample 17

 return (result);
 }

 void zipFile_AddProgress(object sender, AddProgressEventArgs e)
 {
 switch (e.EventType)
 {
 case ZipProgressEventType.Adding_Started:
 break;
 case ZipProgressEventType.Adding_AfterAddEntry:
 break;
 case ZipProgressEventType.Adding_Completed:
 break;
 }

 }
 }
}

if (this.weekday != 0) //Need to know if current weekday matches parameter's weekday
{
 if (((int)System.DateTime.Now.DayOfWeek) + 1 != this.weekday)
 {
 return;
 }
}

if (System.TimeSpan.Parse(this.time) >
DateTime.Now.TimeOfDay) //If current daytime is earlier than defined in parameters, t
he process is stoped

44

The first thing the method does is to check if weekday parameter is zero. If it is, it means that
the backup process must be performed every day. Otherwise, the method needs to check if the
weekday parameter matches the current weekday. This is done by comparing weekday
parameter value against System.DateTime.Now.DayOfWeek property value. Since the

DayOfWeek property is zero-base indexed, it’s needed to add 1 before comparison, because the

parameter established in the XML file is one-base indexed. If comparison gets true as a result,

the execution continues. Otherwise, the method returns control to the calling process.

The next thing to do is to check if backup time parameter value matches current time value. The
first thing the code does is to parse the time string parameter value, in order to transform it in a
TimeSpan value. Then, compares the result against the TimeOfDay property of DateTime.Now,

and if the values don’t match, the method returns control to the calling process. Otherwise, the
method execution continues.

Running the backup process

If parameter conditions are met, the backup process is executed. The following code
accomplishes this.

Code Sample 18

At this point, a BackupEngine property was added to the service class definition, in order to

keep an instance of the backupfiles class available while the service is running. The values of

source_path and destination_path service class properties are passed to the respective

properties in the BackupEngine instance, and the DoBackup() method is executed to start the

backup process.

An issue to be solved

The timer_Elapsed() method is executed every 300 milliseconds while the service is running,

and this method performs the backup process if the parameter conditions are met. As
mentioned, an instance of the backupfiles class is available along service lifetime. So, the first

time that backup conditions are met, DoBackup() method is executed and the control returns

outside the timer_Elapsed() method.

What will happen if, next time, the timer_Elapsed() method is executed and backup

conditions are met? The DoBackup() method will be executed again, and if a previous backup

is started, it’s likely that the service will crash. To avoid this situation, a property named IsBusy

will be added to the backupfiles class in order to flag when the backup process is in progress.

Now, the code for the backupfiles class will look like the following snippet.

{
 return;
}

this.BackupEngine.source_path = this.source_path;
this.BackupEngine.destination_path = this.destination_path;
this.BackupEngine.DoBackup();

 45

Code Sample 19

using Ionic.Zip;
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace monitorservice
{
 public class backupfiles
 {
 public string source_path = "";
 public string destination_path = "";
 public string error_message = "";
 public Boolean IsBusy = false;

 public Boolean DoBackup()
 {
 Boolean result = default(Boolean);
 this.IsBusy = false;

 string destFileName = this.destination_path + "\\backup_" + System.DateTi
me.Now.ToString("MMM-dd-yyyy") + "-
" + System.DateTime.Now.ToString("hh:mm:ss").Replace(":","-")+".zip";

 using (ZipFile zipFile = new ZipFile())
 {
 string[] fileList = new string[1];
 result = true;

 this.error_message = "";

 try
 {
 fileList = Directory.GetFiles(this.source_path + "\\");
 }
 catch (Exception exception)
 {
 this.error_message = String.Format("MonitorService: Folder fi
le list can't be read: {0}",exception.Message);
 result = false;
 }
 finally
 {
 if (result)
 {
 this.IsBusy = true;

 zipFile.Encryption = EncryptionAlgorithm.WinZipAes256;
 zipFile.AddProgress += (this.zipFile_AddProgress);

46

Every time the backup process starts, the IsBusy property is set to the value of true, indicating

that the method won’t be allowed to execute until the current process finishes. When backup
process finishes, IsBusy is set to false.

 zipFile.AddDirectory(this.source_path);

 zipFile.Save(destFileName);

 this.IsBusy = false;
 }

 }
 }

 return (result);
 }

 void zipFile_AddProgress(object sender, AddProgressEventArgs e)
 {
 switch (e.EventType)
 {
 case ZipProgressEventType.Adding_Started:
 break;
 case ZipProgressEventType.Adding_AfterAddEntry:
 break;
 case ZipProgressEventType.Adding_Completed:
 break;
 }

 }
 }
}

 47

The entire code for the timer_Elapsed() event

Now, the code for the event will look like the code shown in the following sample.

Code Sample 20

After backup conditions are checked, the property IsBusy of the BackupEngine instance is

checked. If the value for the property is true, the method stops its execution and returns the

control to the calling process. Otherwise, the backup process is executed.

private void timer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
 if (!this.IsReady)
 {
 return;
 }

 if (this.weekday != 0) //Need to know if current weekday matches parameter's week
day
 {
 if (((int)System.DateTime.Now.DayOfWeek) + 1 != this.weekday)
 {
 return;
 }
 }

 if (DateTime.Now.TimeOfDay < System.TimeSpan.Parse(this.time)) //If current dayti
me is earlier than defined in parameters, the process is stoped
 {
 return;
 }

 if (this.BackupEngine.IsBusy) //If backup process was previously started we do n
othing
 {
 return;
 }

 this.BackupEngine.source_path = this.source_path;
 this.BackupEngine.destination_path = this.destination_path;
 this.BackupEngine.DoBackup();

}

48

The puzzle has been assembled

Now, all the pieces have been gathered together, and the service class code looks like the
following snippet.

Code Sample 21

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Linq;
using System.ServiceProcess;
using System.Text;
using System.Threading.Tasks;
using System.Xml;

namespace monitorservice
{
 public partial class monitorservice : ServiceBase
 {
 private System.Timers.Timer serviceTimer = null;
 private string HomeDir = (new System.IO.DirectoryInfo(System.AppDomain.Curren
tDomain.BaseDirectory)).FullName.Trim();
 private string source_path = "";
 private string destination_path = "";
 private int weekday = 0;
 private string time = "";
 private Boolean IsReady = false;
 private backupfiles BackupEngine = new backupfiles();

 public monitorservice()
 {
 InitializeComponent();
 }

 protected override void OnStart(string[] args)
 {
 if (!System.Diagnostics.EventLog.SourceExists("MonitorService"))
 System.Diagnostics.EventLog.CreateEventSource("MonitorService", "Appl
ication");

 this.LogEvent(String.Format("MonitorService starts on {0} {1}", System.Da
teTime.Now.ToString("dd-MMM-
yyyy"), DateTime.Now.ToString("hh:mm:ss tt")), EventLogEntryType.Information);

 this.check_parameters(); //Need to load service behavior parameters

 this.serviceTimer = new System.Timers.Timer(300);
 this.serviceTimer.AutoReset = true;
 this.serviceTimer.Elapsed += new System.Timers.ElapsedEventHandler(this.t
imer_Elapsed);

 49

 this.serviceTimer.Start();
 }

 private void timer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
 {
 if (!this.IsReady)
 {
 return;
 }

 if (this.weekday != 0) //Need to know if current weekday matches paramete
r's weekday
 {
 if (((int)System.DateTime.Now.DayOfWeek) + 1 != this.weekday)
 {
 return;
 }
 }

 if (DateTime.Now.TimeOfDay < System.TimeSpan.Parse(this.time)) //If curre
nt daytime is earlier than defined in parameters, the process is stoped
 {
 return;
 }

 if (this.BackupEngine.IsBusy) //If backup process was previously started
 we do nothing
 {
 return;
 }

 this.BackupEngine.source_path = this.source_path;
 this.BackupEngine.destination_path = this.destination_path;
 this.BackupEngine.DoBackup();

 }

 protected override void OnStop()
 {
 this.serviceTimer.Stop();
 this.serviceTimer.Dispose();
 this.serviceTimer = null;

 this.LogEvent(String.Format("MonitorService stops on {0} {1}", System.Dat
eTime.Now.ToString("dd-MMM-
yyyy"), DateTime.Now.ToString("hh:mm:ss tt")), EventLogEntryType.Information);

 }

 private void LogEvent(string message, EventLogEntryType entryType)
 {
 System.Diagnostics.EventLog eventLog = new System.Diagnostics.EventLog();

 eventLog = new System.Diagnostics.EventLog();

50

 eventLog.Source = "MonitorService";
 eventLog.Log = "Application";
 eventLog.WriteEntry(message, entryType);

 }

 private void check_parameters()
 {
 if (!System.IO.Directory.Exists(this.HomeDir + "\\parameters"))
 {
 System.IO.Directory.CreateDirectory(this.HomeDir + "\\parameters");
 this.LogEvent(String.Format("MonitorService: parameters file folder w
as just been created"), EventLogEntryType.Information);
 this.IsReady = false;
 }
 else
 {
 if (System.IO.File.Exists(this.HomeDir + "\\parameters\\srvparams.xml
"))
 {
 Boolean docparsed = true;
 XmlDocument parametersdoc = new XmlDocument();

 try
 {
 parametersdoc.Load(this.HomeDir + "\\parameters\\srvparams.xm
l");
 }
 catch (XmlException ex)
 {
 docparsed = false;
 this.IsReady = false;
 this.LogEvent(String.Format("Parameters file couldn't be read
: {0}", ex.Message), EventLogEntryType.Error);
 }

 if (docparsed)
 {
 XmlNode BackupParameters = parametersdoc.ChildNodes.Item(1).C
hildNodes.Item(0);
 this.source_path = BackupParameters.Attributes.GetNamedItem("
source").Value.Trim();
 this.destination_path = BackupParameters.Attributes.GetNamedI
tem("destination").Value.Trim();
 this.weekday = Convert.ToInt32(BackupParameters.Attributes.Ge
tNamedItem("dayofweek").Value.Trim());
 this.time = BackupParameters.Attributes.GetNamedItem("hour").
Value.Trim();

 this.IsReady = true;

 this.LogEvent(String.Format("Backup Service parameters were l
oaded"), EventLogEntryType.Information);

 51

Now it’s time to build the solution and get the application executable file.

Chapter summary

To build the backup files service, the first thing that must be done is to create a XML file to store
all the parameters needed to control service behavior. The root node of the XML file will be
called Parameters, and will be intended to hold all the actions the service will perform. Each

action will be stored as a child node, and for backup service, a Backup child node will be stored
with the following attributes: Source, which indicates the folder in which the files to be backed

up are contained; Destination, which indicates the folder that will store the zip backup file;

Dayofweek, which indicates the day of the week, starting with 1 for Sunday, in which the backup

process will be executed (zero means every day); and Hour, which indicates the time of the day

for executing backup process.

A method called check_parameters() is created for reading the XML file, using the

XmlDocument .NET class. This method is called when service execution starts, and stores all

the parameters in a set of corresponding properties defined in the service class definition.

A class named backupfiles is created to deal with the backup process. This class uses the

IonicZip library to compress the backup. This library must be added as a reference into the
Visual Studio project, and can be downloaded here. The service class definition holds an
instance for this class in a property called BackupEngine.

Every time the timer_Elapsed() method of the service class definition is executed, it checks to

see if the backup conditions are met. If they are, the method inquires if a previous backup
process is being performed, by using a property named IsBusy that belongs to the

backupfiles class, and comparing its value to true. If it is, the method execution stops.

Otherwise, the backup process starts. When it is complete, the value of IsBusy is set to

false, in order to allow the execution of a new backup process.

At the end, an executable file is obtained when the solution is built.

 }

 parametersdoc = null;
 }
 else
 {
 this.LogEvent(String.Format("Backup Service parameters file doesn
't exist"), EventLogEntryType.Error);
 }
 }
 }

 }
}

http://dotnetzip.codeplex.com/releases/view/68268

52

Chapter 5 Deploying the Service

Once the application executable file is built, it needs to be deployed in the computer where it will
work—either a workstation or server. Trying to build an msi installation file could be the most
reliable way to do this. But there’s also a simpler way to accomplish the deployment process:
creating a .BAT file in which the installutil.exe tool will be used.

Installer tool

The Installer tool is a command-line utility that allows you to install and uninstall server
resources by executing the installer components in specified assemblies. This tool works in
conjunction with classes in the System.Configuration.Install namespace.

This tool is automatically installed with Visual Studio. To run the tool, use the Developer
Command Prompt (or the Visual Studio Command Prompt in Windows 7).

At the command prompt, type the following:

Code Sample 22

Table 1: Table 1: Parameters

Argument Description

Assembly The file name of the assembly in which to execute
the installer components. Omit this parameter if
you want to specify the assembly's strong name by
using the /AssemblyName option.

Table 2: Table 2: Options

Option Description

h[elp]

-or-

Displays command syntax and options for the
tool.

installutil [/u[ninstall]] [options] assembly [[options] assembly] ...

 53

Option Description

/?

/help assembly

-or-

/? assembly

Displays additional options recognized by
individual installers within the specified assembly,
along with command syntax and options for
InstallUtil.exe. This option adds the text returned
by each installer component's
Installer.HelpText property to the help text of
InstallUtil.exe.

/AssemblyName "assemblyName

,Version=major.minor.build.revision

,Culture=locale

,PublicKeyToken=publicKeyToken"

Specifies the strong name of an assembly, which
must be registered in the global assembly cache.
The assembly name must be fully qualified with
the version, culture, and public key token of the
assembly. The fully qualified name must be
surrounded by quotes.

For example, "myAssembly, Culture=neutral,
PublicKeyToken=0038abc9deabfle5,
Version=4.0.0.0" is a fully qualified assembly
name.

/InstallStateDir=[directoryName] Specifies the directory of the .InstallState file that
contains the data used to uninstall the assembly.
The default is the directory that contains the
assembly.

/LogFile= [filename] Specifies the name of the log file where
installation progress is recorded. By default, if
the /LogFile option is omitted, a log file
named assemblyname.InstallLog is created.
If filename is omitted, no log file is generated.

/LogToConsole ={true|false} If true, displays output to the console. If false (the
default), suppresses output to the console.

/ShowCallStack Outputs the call stack to the log file if an exception
occurs at any point during installation.

54

Option Description

/u [ninstall] Uninstalls the specified assemblies. Unlike the
other options, /u applies to all assemblies
regardless of where the option appears on the
command line.

Remarks

.NET Framework applications consist of traditional program files and associated resources,
such as message queues, event logs, and performance counters that must be created when the
application is deployed. You can use an assembly's installer components to create these
resources when your application is installed, and to remove them when your application is
uninstalled. Installutil.exe detects and executes these installer components.

You can specify multiple assemblies on the same command line. Any option that occurs before
an assembly name applies to that assembly's installation. Except for /u and /AssemblyName,
options are cumulative but can be overridden. That is, options specified for one assembly apply
to all subsequent assemblies unless the option is specified with a new value.

If you run Installutil.exe against an assembly without specifying any options, it places the
following three files into the assembly's directory:

 InstallUtil.InstallLog – Contains a general description of the installation progress

 assemblyname.InstallLog – Contains information specific to the commit phase of the
installation process

 assemblyname.InstallState – Contains data used to uninstall the assembly

Installutil.exe uses reflection to inspect the specified assemblies and to find all Installer types
that have the System.ComponentModel.RunInstallerAttribute attribute set to true. The

tool then executes either the Installer.Install or the Installer.Uninstall method on

each instance of the Installer type. Installutil.exe performs installation in a transactional manner;
that is, if one of the assemblies fails to install, it rolls back the installations of all other
assemblies. Uninstall is not transactional.

BAT installation file

This file can be created using a text editor like Notepad. Once the file is created, it should look
like the following sample.

Code Sample 23

@ECHO OFF
CLS
ECHO Installing Windows Service

 55

BAT uninstall file

Likewise, the uninstall process can be performed using a .BAT file, and should look like the
following snippet.

Code Sample 24

Both files look almost the same. The only difference is the /U option used for
INSTALLUITL.EXE in the uninstall file.

Note: To ensure the service will be properly deployed, Installutil.exe must be included in the

service distribution package.

Service distribution package

To deploy the service executable, a distribution package is needed. This package will contain
the necessary files to make a successful installation in the target computer. The following files
must be included in the service distribution package:

 Installutil.exe (shipped with Visual Studio)

 Monitorservice.exe (the service executable file)

 Ionic.Zip.dll (library used for ZIP creation)

 The XML file with service execution parameters

 BAT installation file

 BAT uninstall file

Tip: For an easy distribution, the package can be shipped in a zip file, which can be

decompressed in the target computer at install time.

INSTALLUTIL.EXE monitorservice.exe
ECHO Service has been installed
PAUSE

@ECHO OFF
CLS
ECHO Uninstalling Windows Service
INSTALLUTIL.EXE /U monitorservice.exe
ECHO Service has been uninstalled
PAUSE

56

Chapter summary

An msi file could be a reliable way to deploy the service executable file in the target computer,
but using a .BAT command file with the Installer tool is an easy way to do it.

The Installer tool (Installutil.exe) is a command-line utility that allows you to install and uninstall
server resources. This tool works in conjunction with the System.Configuration.Install

namespace. This tool is automatically installed with Visual Studio.

Installutil.exe uses reflection to inspect the specified assemblies and to find all Installer types
that have the System.ComponentModel.RunInstallerAttribute attribute set to true. The

tool then executes either the Installer.Install or the Installer.Uninstall method on

each instance of the Installer type.

A couple of .BAT files must be included in the distribution package; one for installing the service
executable file, and another one to perform uninstallation of the executable from the target
computer.

 57

Chapter 6 Creating a User Interface to
Configure the Service

Overview

Throughout this book it has been stated that a Windows Service has no interface, and that a
configuration file is the proper way to control the behavior of a service. Usually, this
configuration file can be written in a text editor and saved to disk, but it looks more professional
if a program with a user interface is built for this purpose. Many known services (such as
Filezilla FTP Server) make these programs available to the user, in order to create or modify its
own configuration files in an intuitive and easy way.

This chapter is intended to build a Windows Forms program named MonitorServiceGUI, which
will deal with creating and editing the configuration file needed by the service that was built
previously.

Creating the solution in Visual Studio

The first step is to create a Windows Forms project named MonitorServiceGUI using Visual
Studio. The programming language to use will be C# and the target framework will be .NET 4.

58

Figure 11: Figure 11: MonitorServiceGUI project dialog

When Visual Studio ends project creation, two files named Form1.cs and Program.cs can be
found in the Solution Explorer’s tree. For clarity, these files will be renamed to mainform.cs and
mainprogram.cs, respectively. Now, the Solution Explorer will look like the following figure.

Figure 12: Figure 12: Solution Explorer for MonitorServiceGUI project

The mainprogram.cs file contains the application’s entry point, which is handled by a static
class named mainprogram. This class has one method named Main, which sets the application

environment, creates an instance of the mainform class (defined in mainform.cs), and shows it

on the screen. It can be seen in the following code sample.

Code Sample 25

using System;

 59

The mainform will be the only form in the project. This will contain all GUI elements in order to

set up the service behavior parameters, and will deal with creation of the configuration file
needed for the service to run.

Setting up the project’s main form

The main form needs only a few graphic elements to accomplish its purpose. These elements
are:

 A combo box to select the day of the week in which the backup will be done. The
DropDownStyle property for this element must be set to DropDownList. Using the
Designer, the item list will be filled with the names of all week days. The first name
for this list will be Every day.

 A label placed to the left of the combo box, with the legend Day of Week

 A masked text box to enter the hour in which the backup will be done

 A label placed to the left of the masked text box, with the legend Hour

 A textbox to enter the path in which the files to be backed up are

 A label placed to the left of the previous textbox, with the legend Source Path

 A textbox to enter the path in which the zipped backup will be stored

 A label placed to the left of the previous textbox, with the legend Destination Path

 A Save button to store the parameters in an XML file

 A Cancel button to close the form and ignore the changes that could be made

Besides the elements mentioned previously, the following properties need to be set to finish the
mainform design:

 Text – This property will be set to “Backup Service Interface.”

using System.Collections.Generic;
using System.Linq;
using System.Windows.Forms;

namespace monitorservicegui
{
 static class mainprogram
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.EnableVisualStyles();
 Application.SetCompatibleTextRenderingDefault(false);
 Application.Run(new mainform());
 }
 }
}

60

 FormBorderStyle – This property will be set to FixedSingle.

 MaximizeBox – This property will bet set to False.

 CancelButton – This property will be set to the Cancel button graphic element
mentioned previously.

When all graphic elements are placed in the form, and the values for the properties mentioned
previously are set, the Designer View for the mainform will look like the following figure.

Figure 13: Mainform.cs Designer View

Looking for a previous XML parameters file

The first thing that must be done is to check if a XML parameters file already exists. If it does, all
values stored in the file need to be passed to the graphic elements in the form, in order to show
them to the user. If the file doesn’t exist, the program must pass a set of initial values to the
graphics elements in the form and show them. To do this, we’ll use the Load event of

mainform, as shown in the following code sample.

Code Sample 26

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

 61

using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;

namespace monitorservicegui
{
 public partial class mainform : Form
 {
 string HomeDir = Path.GetDirectoryName(Application.ExecutablePath).Trim();
 public mainform()
 {
 InitializeComponent();
 }

 private void mainform_Load(object sender, EventArgs e)
 {
 if (!this.check_parameters())
 {
 this.comboBox1.SelectedIndex = 0;
 this.comboBox1.Refresh();
 this.maskedTextBox1.Text = "00:00";
 this.maskedTextBox1.Refresh();
 this.textBox1.Text = "";
 this.textBox1.Refresh();
 this.textBox2.Text = "";
 this.textBox2.Refresh();
 }
 }

 private Boolean check_parameters()
 {
 Boolean result = default(Boolean);

 if (!System.IO.Directory.Exists(this.HomeDir + "\\parameters"))
 {
 System.IO.Directory.CreateDirectory(this.HomeDir + "\\parameters");
 result = false;
 }
 else
 {
 if (System.IO.File.Exists(this.HomeDir + "\\parameters\\srvparams.xml
"))
 {
 result = true;
 XmlDocument parametersdoc = new XmlDocument();

 try
 {
 parametersdoc.Load(this.HomeDir + "\\parameters\\srvparams.xm
l");
 }

62

A separate method called check_parameters() is created with the purpose of inquiring the

existence of the XML file. If the file exists, the method uses the XmlDocument object in order to

parse the file and get all parameter values. Then, these values are passed to their
corresponding graphic elements in the form. A value of true is returned in order to indicate that

the file was found and all the parameters were properly loaded. Else, if the XML file is not found
or can’t be parsed, a value of false is returned to indicate that the parameter values were not

available.

The Load event checks for the value returned from the check_parameters() method. If a

value of false is returned, all graphic elements are filled with initial values and refreshed to

show these values to the user.

 catch
 {
 result = false;

 }

 if (result)
 {
 XmlNode BackupParameters = parametersdoc.ChildNodes.Item(1).C
hildNodes.Item(0);
 this.textBox1.Text = BackupParameters.Attributes.GetNamedItem
("source").Value.Trim();
 this.textBox1.Refresh();
 this.textBox2.Text = BackupParameters.Attributes.GetNamedItem
("destination").Value.Trim();
 this.textBox2.Refresh();
 this.comboBox1.SelectedIndex = Convert.ToInt32(BackupParamete
rs.Attributes.GetNamedItem("dayofweek").Value.Trim());
 this.comboBox1.Refresh();
 this.maskedTextBox1.Text = BackupParameters.Attributes.GetNam
edItem("hour").Value.Trim();
 this.maskedTextBox1.Refresh();
 }

 parametersdoc = null;
 }
 else
 {
 result = false;
 }
 }

 return (result);
 }

 }
}

 63

Dealing with data entry

At this point, the user interface for the backup service checks for XML file existence and loads
the parameter values if this file is present.

Now, it’s time to control data entry to prevent storage of wrong values in the XML file that can
cause the service malfunction. The following tasks must be performed:

 Avoid time values out of 00:00 to 23:59 range.

 Verify the existence of the source and destination path.

The value of DayofWeek is controlled by the combobox automatically, because the

SelectedIndex property value will be between 0 and 7, depending on which day is selected by

the user, including the Every day option.

Validating time values

For time values validation, you’ll use the TypeValidationCompleted event of the

maskedTextbox control. The following code sample shows how this is accomplished.

Code Sample 27

The method checks for the value of the IsValidInput property that belongs to the

TypeValidationEventArgs parameter passed. If this value is false, the Cancel property of the

parameter is set to true. This avoids passing the focus to another control, including the Cancel

button and the Close button, in the form.

Checking existence of source and destination paths

Source and destination paths must exist in the disk in order to ensure the service will work. The
design of mainform has two textboxes in which these paths can be entered. To validate the

existence of these folders, the Validating event for both paths will be used, as in the following

code snippet.

Code Sample 28

private void maskedTextBox1_TypeValidationCompleted(object sender, TypeValidationEven
tArgs e)
{
 if (!e.IsValidInput)
 {
 e.Cancel = true;
 }
}

private void textBox1_Validating(object sender, CancelEventArgs e)

64

For both methods, if there’s no input in the textbox, the method stores true in the Cancel
property of the CancelEventArgs parameter. This prevents the textbox from losing the focus,

and the cursor remains in it. Else, the method checks if the entry in the textbox corresponds to a
valid path in the system. If the path doesn’t exist, the method shows an error message dialog
and sets the Cancel property of the CancelEventArgs parameter to the value of true, in

order to make sure the cursor remains in the textbox.

Saving the parameters in the XML file

Once all the parameters values are entered, the last step is to store these values in the XML file
that the service will use to work properly. The following task list needs to be completed to
succeed:

{
 if (this.textBox1.Text.Trim().Length == 0)
 {
 e.Cancel = true;
 }
 else
 {
 if (!System.IO.Directory.Exists(this.textBox1.Text.Trim()))
 {
 MessageBox.Show("The Source Path entered doesn't exist.", "Backup Service I
nterface");
 e.Cancel = true;
 }
 }
}

private void textBox2_Validating(object sender, CancelEventArgs e)
{
 if (this.textBox2.Text.Trim().Length == 0)
 {
 e.Cancel = true;
 }
 else
 {
 if (!System.IO.Directory.Exists(this.textBox2.Text.Trim()))
 {
 MessageBox.Show("The Destination Path entered doesn't exist.", "Backup Se
rvice Interface");
 e.Cancel = true;
 }
 }

}

 65

 Create an XmlDocument object with the proper attributes to hold the parameters’
values.

 Use the Save method of the XmlDocument to store the file.

 Tell the service that the parameters were changed, in order to make the service
change its behavior.

Using the XmlDocument object

A method called Save_Parameters will be created to perform the XML file creation. This

method will be called from the Click event of the Save button, as seen in the following code

sample.

Code Sample 29

private void button1_Click(object sender, EventArgs e)
{
 this.Save_Parameters();
}

private void Save_Parameters()
{
 XmlDocument oparamsxml = new XmlDocument();

 XmlProcessingInstruction _xml_header = oparamsxml.CreateProcessingInstruction("xm
l", "version='1.0' encoding='UTF-8'");

 oparamsxml.InsertBefore(_xml_header, oparamsxml.ChildNodes.Item(0));

 XmlNode parameters = oparamsxml.CreateNode(XmlNodeType.Element, "Parameters", "")
;
 XmlNode backup = oparamsxml.CreateNode(XmlNodeType.Element, "Backup", "");

 XmlAttribute attribute = oparamsxml.CreateAttribute("source");
 attribute.Value = this.textBox1.Text.Trim();
 backup.Attributes.Append(attribute);

 attribute = oparamsxml.CreateAttribute("destination");
 attribute.Value = this.textBox2.Text.Trim();
 backup.Attributes.Append(attribute);

 attribute = oparamsxml.CreateAttribute("dayofweek");
 attribute.Value = this.comboBox1.SelectedIndex.ToString("00");
 backup.Attributes.Append(attribute);

 attribute = oparamsxml.CreateAttribute("hour");
 attribute.Value = this.maskedTextBox1.Text.Trim();
 backup.Attributes.Append(attribute);

 parameters.AppendChild(backup);
 oparamsxml.AppendChild(parameters);

66

First, the method creates an XmlDocument object and the Parameters root node. Then, the

Backup child node is created along with all its attributes. Each attribute corresponds to a

parameter needed for the service to work, and its proper value is taken from the graphics
elements placed in the form for that purpose.

At the end, the Save method of the XmlDocument object stores the file in the disk.

Notifying the service that the parameters were changed

The action of saving the parameters in the disk means that the service behavior needs to
change. To notify the service, the program needs to perform the following tasks:

 Check to see if the service is installed in the target system.

 Stop the execution of the service.

 Start the execution of the service in order to make it load the new parameters.

A method named Notify_Changes will be created to execute the previous tasks, and will be

called from the Click event of the Save button, just after the calling of the Save_Parameters

method discussed in the previous section. Now, the code will look like the following.

Code Sample 30

 if (!Directory.Exists(this.HomeDir + "\\parameters"))
 {
 Directory.CreateDirectory(this.HomeDir + "\\parameters");
 }

 oparamsxml.Save(this.HomeDir + "\\parameters\\srvparams.xml");
}

private void button1_Click(object sender, EventArgs e)
{
 this.Save_Parameters();
 this.Notify_Changes();
 this.Close();
}

private void Save_Parameters()
{
 XmlDocument oparamsxml = new XmlDocument();

 XmlProcessingInstruction _xml_header = oparamsxml.CreateProcessingInstruction("xm
l", "version='1.0' encoding='UTF-8'");

 oparamsxml.InsertBefore(_xml_header, oparamsxml.ChildNodes.Item(0));

 XmlNode parameters = oparamsxml.CreateNode(XmlNodeType.Element, "Parameters", "")
;

 67

The ServiceController class

 XmlNode backup = oparamsxml.CreateNode(XmlNodeType.Element, "Backup", "");

 XmlAttribute attribute = oparamsxml.CreateAttribute("source");
 attribute.Value = this.textBox1.Text.Trim();
 backup.Attributes.Append(attribute);

 attribute = oparamsxml.CreateAttribute("destination");
 attribute.Value = this.textBox2.Text.Trim();
 backup.Attributes.Append(attribute);

 attribute = oparamsxml.CreateAttribute("dayofweek");
 attribute.Value = this.comboBox1.SelectedIndex.ToString("00");
 backup.Attributes.Append(attribute);

 attribute = oparamsxml.CreateAttribute("hour");
 attribute.Value = this.maskedTextBox1.Text.Trim();
 backup.Attributes.Append(attribute);

 parameters.AppendChild(backup);
 oparamsxml.AppendChild(parameters);

 if (!Directory.Exists(this.HomeDir + "\\parameters"))
 {
 Directory.CreateDirectory(this.HomeDir + "\\parameters");
 }

 oparamsxml.Save(this.HomeDir + "\\parameters\\srvparams.xml");
}

private void Notify_Changes()
{

 ServiceController controller = ServiceController.GetServices().FirstOrDefault(s =
> s.ServiceName == "MonitorService");

 if (controller!=null) //The service is installed
 {
 if (controller.Status == ServiceControllerStatus.Running) //The service is run
ning, so it needs to be stopped and started again to reload the parameters
 {
 controller.Stop(); //Stops the service
 controller.WaitForStatus(ServiceControllerStatus.Stopped); //Waits until t
he service is really stopped
 controller.Start(); //Starts the service and reload the parameters
 }
 }

}

68

A ServiceController component allows us to access and manage Windows Services

running on a machine. The ServiceController class can be used to connect to and control

the behavior of existing services. When an instance of the ServiceController class is

created, its properties can be set to interact with a specific Windows service. The class can be
used to start, stop, and otherwise manipulate the service.

After an instance of ServiceController is created, two properties must be set within it to

identify the service with which it interacts: the computer name, and the name of the service you
want to control.

Note: By default, MachineName is set to the local computer, so you don’t need to change it

unless you want to set the instance to point to another computer.

Adding a System.ServiceProcess Reference

A ServiceController represents a Windows Service and is defined in the

System.ServiceProcess namespace. Before this namespace can be imported, you must add

a reference to the System.ServiceProcess assembly.

To add a reference to an assembly, right-click on the project name in Visual Studio and select
Add Reference, and then browse the assembly you need to add to your application.

Figure 14: Add Reference dialog with the System.ServiceProcess assembly

 69

What does Notify_Changes code do?

The ServiceController.GetServices static method returns the list of all services running on

the computer. Along with this method, the Enumerable.FirstOrDefault associated method is

used to scan the entire list, seeking a service named MonitorService. If the name is not found,

FirstOrDefault returns a null value; otherwise, it returns an instance of a

ServiceController object associated to the MonitorService.

If an instance associated to the MonitorService is returned, the program inquires for the value

stored in the Status property of the instance. The possible values that can be stored in the

property are:

 ServiceControllerStatus.ContinuePending – The service continue is pending.
This corresponds to the Win32 SERVICE_CONTINUE_PENDING constant, which is
defined as 0x00000005.

 ServiceControllerStatus.Paused – The service is paused. This corresponds to
the Win32 SERVICE_PAUSED constant, which is defined as 0x00000007.

 ServiceControllerStatus.PausePending – The service pause is pending. This
corresponds to the Win32 SERVICE_PAUSE_PENDING constant, which is defined
as 0x00000006.

 ServiceControllerStatus.Running – The service is running. This corresponds to
the Win32 SERVICE_RUNNING constant, which is defined as 0x00000004.

 ServiceControllerStatus.StartPending – The service is starting. This
corresponds to the Win32 SERVICE_START_PENDING constant, which is defined
as 0x00000002.

 ServiceControllerStatus.Stopped – The service is not running. This
corresponds to the Win32 SERVICE_STOPPED constant, which is defined as
0x00000001.

 ServiceControllerStatus.StopPending – The service is stopping. This
corresponds to the Win32 SERVICE_STOP_PENDING constant, which is defined as
0x00000003.

In this case, the method needs to perform actions only if the value of Status is

ServiceControllerStatus.Running. This means that the service is currently running in the

computer and needs to be stopped in order to reload the parameters. The Stop method is used

to perform this action.

Ensuring that the service is really stopped

To start the service execution again, the program needs to be sure that it is really stopped. The
time consumed by the service to stop depends on how many dependencies it has. The
WaitForStatus method is used to delay program execution until the service reaches the

Stopped status. Now, the program is sure that the service is not running.

Reloading service parameters

Since the parameters file is read every time the service starts its execution, once the service is
stopped, the program executes the Start method of the ServiceController instance. This

action causes the parameters to be reloaded from the XML file.

70

The mainform.cs entire code

Now, the mainform.cs code looks like the following sample.

Code Sample 31

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.ServiceProcess;
using System.Xml;

namespace monitorservicegui
{
 public partial class mainform : Form
 {
 string HomeDir = Path.GetDirectoryName(Application.ExecutablePath).Trim();
 public mainform()
 {
 InitializeComponent();
 }

 private void mainform_Load(object sender, EventArgs e)
 {
 if (!this.check_parameters())
 {
 this.comboBox1.SelectedIndex = 0;
 this.comboBox1.Refresh();
 this.maskedTextBox1.Text = "00:00";
 this.maskedTextBox1.Refresh();
 this.textBox1.Text = "";
 this.textBox1.Refresh();
 this.textBox2.Text = "";
 this.textBox2.Refresh();
 }
 }

 private Boolean check_parameters()
 {
 Boolean result = default(Boolean);

 if (!System.IO.Directory.Exists(this.HomeDir + "\\parameters"))
 {
 System.IO.Directory.CreateDirectory(this.HomeDir + "\\parameters");
 result = false;
 }

 71

 else
 {
 if (System.IO.File.Exists(this.HomeDir + "\\parameters\\srvparams.xml
"))
 {
 result = true;
 XmlDocument parametersdoc = new XmlDocument();

 try
 {
 parametersdoc.Load(this.HomeDir + "\\parameters\\srvparams.xm
l");
 }
 catch
 {
 result = false;

 }

 if (result)
 {
 XmlNode BackupParameters = parametersdoc.ChildNodes.Item(1).C
hildNodes.Item(0);
 this.textBox1.Text = BackupParameters.Attributes.GetNamedItem
("source").Value.Trim();
 this.textBox1.Refresh();
 this.textBox2.Text = BackupParameters.Attributes.GetNamedItem
("destination").Value.Trim();
 this.textBox2.Refresh();
 this.comboBox1.SelectedIndex = Convert.ToInt32(BackupParamete
rs.Attributes.GetNamedItem("dayofweek").Value.Trim());
 this.comboBox1.Refresh();
 this.maskedTextBox1.Text = BackupParameters.Attributes.GetNam
edItem("hour").Value.Trim();
 this.maskedTextBox1.Refresh();
 }

 parametersdoc = null;
 }
 else
 {
 result = false;
 }
 }

 return (result);
 }

 private void button2_Click(object sender, EventArgs e)
 {
 this.Close();
 }

 private void maskedTextBox1_TypeValidationCompleted(object sender, TypeValida

72

tionEventArgs e)
 {
 if (!e.IsValidInput)
 {
 e.Cancel = true;
 }
 }

 private void textBox1_Validating(object sender, CancelEventArgs e)
 {
 if (this.textBox1.Text.Trim().Length == 0)
 {
 e.Cancel = true;
 }
 else
 {
 if (!System.IO.Directory.Exists(this.textBox1.Text.Trim()))
 {
 MessageBox.Show("The Source Path entered doesn't exist.", "Backup S
ervice Interface");
 e.Cancel = true;
 }
 }
 }

 private void textBox2_Validating(object sender, CancelEventArgs e)
 {
 if (this.textBox2.Text.Trim().Length == 0)
 {
 e.Cancel = true;
 }
 else
 {
 if (!System.IO.Directory.Exists(this.textBox2.Text.Trim()))
 {
 MessageBox.Show("The Destination Path entered doesn't exist.", "B
ackup Service Interface");
 e.Cancel = true;
 }
 }

 }

 private void button1_Click(object sender, EventArgs e)
 {
 this.Save_Parameters();
 this.Notify_Changes();
 this.Close();
 }

 private void Save_Parameters()
 {
 XmlDocument oparamsxml = new XmlDocument();

 73

 XmlProcessingInstruction _xml_header = oparamsxml.CreateProcessingInstruc
tion("xml", "version='1.0' encoding='UTF-8'");

 oparamsxml.InsertBefore(_xml_header, oparamsxml.ChildNodes.Item(0));

 XmlNode parameters = oparamsxml.CreateNode(XmlNodeType.Element, "Paramete
rs", "");
 XmlNode backup = oparamsxml.CreateNode(XmlNodeType.Element, "Backup", "")
;

 XmlAttribute attribute = oparamsxml.CreateAttribute("source");
 attribute.Value = this.textBox1.Text.Trim();
 backup.Attributes.Append(attribute);

 attribute = oparamsxml.CreateAttribute("destination");
 attribute.Value = this.textBox2.Text.Trim();
 backup.Attributes.Append(attribute);

 attribute = oparamsxml.CreateAttribute("dayofweek");
 attribute.Value = this.comboBox1.SelectedIndex.ToString("00");
 backup.Attributes.Append(attribute);

 attribute = oparamsxml.CreateAttribute("hour");
 attribute.Value = this.maskedTextBox1.Text.Trim();
 backup.Attributes.Append(attribute);

 parameters.AppendChild(backup);
 oparamsxml.AppendChild(parameters);

 if (!Directory.Exists(this.HomeDir + "\\parameters"))
 {
 Directory.CreateDirectory(this.HomeDir + "\\parameters");
 }

 oparamsxml.Save(this.HomeDir + "\\parameters\\srvparams.xml");
 }

 private void Notify_Changes()
 {

 ServiceController controller = ServiceController.GetServices().FirstOrDef
ault(s => s.ServiceName == "MonitorService");

 if (controller!=null) //The service is installed
 {
 if (controller.Status == ServiceControllerStatus.Running) //The servic
e is running, so it needs to be stopped and started again to reload the parameters
 {
 controller.Stop(); //Stops the service
 controller.WaitForStatus(ServiceControllerStatus.Stopped); //Waits
 until the service is really stopped
 controller.Start(); //Starts the service and reload the parameters
 }

74

Now the project is ready to build the executable file. For a context where people are just reading
and not necessarily following along in a code editor, the following screenshots show the finished
program running.

Figure 15: Backup Service Interface mainform filled with data

Figure 16: Backup Service Interface mainform showing the list with all week and weekend days

 }

 }

 }
}

 75

Figure 17: Backup Service Interface with a wrong Source Path entered

Deploying the user interface executable

At the end, the user interface project consists of only one executable file. It can be deployed
along with the service executable distribution package, and must be copied in the same folder in
which the service executable will be installed. The distribution package must include the
following files:

 Installutil.exe (shipped with Visual Studio)

 Monitorservice.exe (the service executable file)

 Monitorservicegui.exe (the service user interface executable file)

 Ionic.Zip.dll (the library used for ZIP creation)

 The XML file with service execution parameters

 BAT installation file

 BAT uninstall file

76

Chapter summary

Since a Windows Service has no interface, a configuration file is the proper way to control its
behavior. A text editor can be used to create or edit this file, but it’s more professional to provide
a program with a user interface to handle the configuration file. Besides, this is an easier way to
accomplish this task.

This chapter explained how to create a Windows Forms program, which will provide the user
interface to the MonitorService discussed here. The program will have only one form, in

which all the parameter values needed will be entered.

The program will write the parameter values in a XML file, which will be used by the service
executable program. The program will be able to read the parameters values if the XML file
previously exists in the computer.

Finally, the program will communicate with the service in order to notify it when the parameter
values change. The ServiceController class will be used to accomplish this task. In order to

use the ServiceController class, a reference to the System.ServiceProcess assembly

needs to be added in the project.

The ServiceController class allows a program to communicate with and control any service

installed in the computer. Using this class, a service can be stopped, paused, or started. The
program can inquire for the existence of a specific service and if this service is currently running
or stopped.

Once the executable file is created, it must be deployed with the service distribution package
and copied into the folder in which the service will run in the target computer.

 77

General Summary

A Windows Service is an executable program that runs in its own Windows sessions. These
services don’t show any user interface, and can run even if no user is logged on the computer
on which they are running.

Windows Services can be managed by administrators using the Services snap-in located in the
Administrative Tools section of Control Panel.

Since Windows Services have no user interface, the Windows Event Log is the suggested way
to communicate with administrative users. The Windows Event Log is a record of a computer's
alerts and notifications that can be classified in warning, information, error, security success
audit, or security failure audit types. The entries written in the Windows Event Log can be
viewed in the Windows Event Viewer.

Windows Services can be created using Visual Studio with the Windows Service project type,
which creates the service code baseline automatically. The ServiceBase .NET base class is

used to create a derived custom class in order to develop the service. Then, the code baseline
can be customized to fit the specific project needs.

The OnStart and OnStop events are used to trap the moment when the service stars its

execution, and when the service execution stops, respectively.

The use of a Timer class instance is suggested if a continuous event monitoring is desired

along service execution.

The service executable file can be deployed using the .NET InstallUtil tool. The InstallUtil tool is
a command-line utility that allows you to install and uninstall server resources, and is shipped
with Visual Studio. BAT files for installation and un-installation should be created, and the
InstallUtil tool must be shipped in the installation package with BAT files and service executable
file. I suggest the ZIP file format for the distribution package, in order to make delivery an easy
step.

If a Windows Service requires parameters to work, the easiest and most common way to
provide them is using a text file. Different formats can be used, but the most reliable is XML. A
text editor program is commonly used to create or edit the file. However, a more professional
way to perform this task is to provide a program with user interface.

A Windows Forms program can be developed to manage the service parameters. This program
must allow you to enter the parameter values and then save them in a file. The program must
use the ServiceController class to communicate the changes made to the service.

Finally, the user interface program made to manage the service parameters must be delivered
with the service deploy package, and copied into the same folder where the service executable
file is stored.

78

Conclusion

Windows Services have been present since Windows NT release, back in 1993. Formerly, they
were known as NT Services, and have been improved along all these years.

There are many practical uses for a service. One main practical use is the interaction between
UI and service programs, which, in this case, is the difference between a client and a server. A
server receives requests, processes the requests, and usually sends back a reply. Thinking
about Microsoft SQL Server or IIS, a client usually calls a service by sending requests to the
server and then displaying or processing the reply. Examples of this are a data entry application
and a web application. The request processing application is always installed as a service in
Windows, and the client is usually just a normal application with a user interface.

There are more uses of a service. In fact, Windows functionality relies on many of them—Printer
Spooler, Audio Manager, DNS Client, and DHCP Client are some examples of that fact.

Anything that can be done without relying on a person to start an application and click a button
is a good candidate for a service. This could be useful to improve software products adding
value either to customers or to the organization internally.

	The Story behind the Succinctly Series of Books
	About the author
	Who is this book for?
	Introduction
	What is a Windows Service?
	Windows Services administration
	Developing Windows Services

	Chapter 1 Windows Services Development with .NET
	Getting started
	How to create the project in Visual Studio
	Windows Service project base line
	Customizing project base line

	Application entry point
	ServiceBase .NET class
	ServiceBase derived class definition
	Service lifetime
	OnStart method
	OnStop method
	Chapter summary

	Chapter 2 The Windows Event Log
	Bounding the service to the Windows Event Log
	Writing events to the Windows Event Log
	Chapter summary

	Chapter 3 Service Installer
	Adding a Service Installer
	Chapter summary

	Chapter 4 Backup Files Service
	Defining requirements
	Task list
	Creating the XML configuration file
	Backup node attributes

	Creating the method that will read the parameters
	Creating a class for the backup process
	Executing the backup process

	The puzzle has been assembled
	Chapter summary

	Chapter 5 Deploying the Service
	Installer tool
	BAT installation file
	BAT uninstall file
	Service distribution package
	Chapter summary

	Chapter 6 Creating a User Interface to Configure the Service
	Overview
	Creating the solution in Visual Studio
	Setting up the project’s main form
	Looking for a previous XML parameters file
	Dealing with data entry
	Validating time values
	Checking existence of source and destination paths

	Saving the parameters in the XML file
	Using the XmlDocument object
	Notifying the service that the parameters were changed
	The ServiceController class
	Adding a System.ServiceProcess Reference
	What does Notify_Changes code do?
	Ensuring that the service is really stopped
	Reloading service parameters

	The mainform.cs entire code
	Deploying the user interface executable
	Chapter summary

	General Summary
	Conclusion

